Field Theories of Condensed Matter: macroscopic quantum coherence and dissipation in quantum systems

  • Typ: Vorlesung (V)
  • Semester: WS 17/18
  • Zeit: 16.10.2017
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau


    19.10.2017
    09:45 - 11:15
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    23.10.2017
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    30.10.2017
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    02.11.2017
    09:45 - 11:15
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    06.11.2017
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    13.11.2017
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    16.11.2017
    09:45 - 11:15
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    20.11.2017
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    27.11.2017
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    30.11.2017
    09:45 - 11:15
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    04.12.2017
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    11.12.2017
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    14.12.2017
    09:45 - 11:15
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    18.12.2017
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    08.01.2018
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    11.01.2018
    09:45 - 11:15
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    15.01.2018
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    22.01.2018
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    25.01.2018
    09:45 - 11:15
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    29.01.2018
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    05.02.2018
    11:30 - 13:00 wöchentlich
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau

    08.02.2018
    09:45 - 11:15
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A) 30.22 Physik-Flachbau


  • Dozent:

    Prof. Dr. Alexander Shnirman
    PD Dr. Boris Narozhny

  • SWS: 3
  • LVNr.: 4024051

!!! Änderung !!!

Donnerstags findet die Vorlesung um 14:00 Uhr im Lehmann HS statt.

On Thursdays the lecture takes place at 14:00 in the Lehmann Lecture Hall.

 

Syllabus

This course is aimed at advanced physics students interested in application of field-theoretical methods to the problems of macroscopic quantum coherence and quantum dissipative systems. During the course we will study the path integral technique, starting from a simple quantum mechanical version for one particle and advancing to the many-body field-theoretical version for bosons and fermions. We will also introduce the Keldysh formalism – the technique, which allows describing non-equilibrium systems in real time. These two main techniques (path integral and Keldysh formalism) will be used to analyze relatively simple, “zero dimensional” systems, e.g. tunnel (Josephson) junctions. 

 

 

 

 

 

 

Part A: Introduction

 

Here the main concepts and systems will be introduced on a simple level (no path integrals, no Keldysh technique)

1) Tunnel junctions, Coulomb blockade, single-electron-transistor
2) Johnson-Nyquist noise vs. shot noise
3) Josephson junctions, macroscopic quantum tunneling, macroscopic quantum coherence and Josephson qubits

 

Part B: Dissipative quantum mechanics

 

In this part the path integral and the Keldysh techniques will be introduced gradually along with the concepts of dissipation in quantum mechanics, effective action, quasi-classical Langevin dynamics etc.

 

1) Spin-Boson model, Golden Rule rates
2) Bloch-Redfield master equation, Lindblad equation, T1 and T2 relaxation times, Lamb shift (renormalization vs. dissipation)
3) Feynman-Vernon (Caldeira-Legget) description of dissipation of a quantum particle  
4) Caldeira-Leggett model in imaginary time, instantons, suppression of macroscopic quantum tunneling
5) Caldeira-Leggett model in real time, quasi-classical Langevin equations, Keldysh formalism
6) Ambegaokar-Eckern-Schön (AES) formalism for tunnel junctions: imaginary time, real time (Keldysh), shot noise

 

Part C: Applications

 

Here we will use the techniques developed in the previous parts in order to describe dissipative phenomena in superconducting and magnetic systems.

 

1) AES treatment of Josephson junctions, quasi-particles
2) P(E)-Theory, Coulomb blockade in shunted junctions, incoherent Cooper-Pair tunneling
3) AES formalism for magnetic systems: derivation of stochastic Landau-Lifshitz-Gilbert equation, spin torque transfer in magnetic tunnel junctions.