Institut für Theorie der Kondensierten Materie (TKM)

Computational Condensed Matter Theory

  • Typ: Vorlesung (V)
  • Lehrstuhl: Fakultät für Physik
  • Semester: WS 13/14
  • Zeit: 24.10.2013
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau


    31.10.2013
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    07.11.2013
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    14.11.2013
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    21.11.2013
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    28.11.2013
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    05.12.2013
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    12.12.2013
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    19.12.2013
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    09.01.2014
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    16.01.2014
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    23.01.2014
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    30.01.2014
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    06.02.2014
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau

    13.02.2014
    09:45 - 11:15 wöchentlich
    30.22 Kl. HS B Physik-Flachbau


  • Dozent: Ferdinand Evers

    Dr. Andreas Poenicke
  • SWS: 2
  • LVNr.: 4024021
Vortragsspracheunbekannt

Important Note:

The excercises for Computational Condensed Matter Theory will already take place on the first monday of the semester, 21st of October 2013 at 9:45 am, in Room 10.1!

Requirements:

Lecture: basic quantum mechanics & solid state physics
Practice: basics programming knowledge
Literature: will be given in first lecture course

Contents

The advent of powerful algorithms -- like the transfer-matrix method, numerical renormalization group schemes, Krylov-subspace methods, ...-- together with the improving computer power has opened up a completely new route to test existing concepts and to obtain new insights into broad classes of physical systems. Nowadays, computational tools are well established in all branches of theoretical physics and make unique and indispensable contributions. Indeed, often they provide the only route for systematic studies and improved understanding.
This lecture offers an introduction into basic computational techniques and the conceptual ideas behind. The pedagogical approach of the lecture will be to start from a fundamental physics example and then develop a numerical approach starting from there. In exercises practical implementations (e.g. with MatLab) will be given. Concepts of the lecture will be illustrated in terms of simple, but scientifically already meaningful examples.
The following topics will be addressed:


1. The gas of non-interacting fermions: tight binding models and their electronic structures
1.1 Excursion: Topologically non-trivial materials and graphene
1.2 Disorder effects: General purpose numerics
1.3 Wavepacket dynamics in nanostructures: Krylov subspace technology

2. Elements of transport theory
2.1 Anderson localization in dirty quantum wires: Transfer matrix methods

3. Fermi liquid corrections
3.1 Briefing: Fermi-Liquid-Theory
3.2 Hartree-Fock method
3.3 Working horse for electronic structure calculations: Density functional theory

4. Strongly correlated electron systems
4.1 Briefing: Kondo effect
4.2 The numerical renormalization group
4.3 Briefing: Luttinger liquid
4.4 The density renormalization group method

5. Monte-Carlo Simulations
5.1 Phase-transitions in systems of classical spins

 

Lecture notes are now available via the "Vorlesungsarbeitsbereich (VAB)" of the Studierendenportal